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Introduction

1. 1 what is Algorithm?

It is any well-defined computational procedure that takes some value, or set of values, as 

input  and  produces  some  value,  or  set  of  values,  as  output. It  is  thus  a  sequence  of 

computational steps that transform the input into the output. It is a tool for solving a well - 

specified computational problem.

Algorithm must have the following criteria:

Input: Zero or more quantities is supplied

Output: At least one quantity is produced.

Definiteness: Each instruction is clear and unambiguous.

Finiteness:  If  we trace out the instructions  of an algorithm, then for all  cases,  the 

algorithm terminates after a finite number of steps.

Effectiveness: Every instruction must be basic so that it can be carried out.  

1.2 What is program? Why DAA?

A program is the expression of an algorithm in a programming language. A set of instructions 

which the computer will follow to solve a problem.

It is learning general approaches to algorithm design.

 
Divide and conquer 

Greedy method  

Dynamic Programming  

Basic Search and Traversal Technique  

Graph Theory 

Branch and Bound

NP Problems

1.3 Why do Analyze Algorithms?

To examine methods of analyzing algorithm 
Correctness and efficiency

-Recursion equations

-Lower bound techniques

-O,Omega and Theta notations for best/worst/average case analysis

Decide whether some problems have no solution in reasonable time 

-List all permutations of n objects (takes n! steps)

-Travelling salesman problem

Investigate memory usage as a different measure of efficiency.



1.4 Importance of Analyzing Algorithms

Need  to  recognize  limitations  of  various  algorithms  for  solving  a  problem.  Need  to 

understand relationship between problem size and running timeWhen is a running program 

not good enough? Need to learn how to analyze an algorithm's running time without coding 

it. Need to learn techniques for writing more efficient code. Need to recognize bottlenecks in 

code as well as which parts of code are easiest to optimize.

1.4.1 The Selection Problem

Problem: given a group of n numbers, determine the kth largest

Algorithm 1

Store numbers in an array

Sort the array in descending order

Return the number in position k

Algorithm 2 

Store first k numbers in an array

Sort the array in descending order

For each remaining number, if the number is larger than the kth number, insert the 

number in the correct position of the array

Return the number in position k

Example

Input is a sequence of integers stored in an array.

            Output the minimum.

INPUT INSTANCE                                   ALGORITHM                         OUTPUT

          25, 90, 53, 23, 11, 34                             11

                                                                         

 

Problem: Description of Input-Output relationship.

Algorithm: A sequence of computational step that transform the input into the output.

Data Structure: An organized method of storing and retrieving data. 

Our task: Given a problem, design a correct and good algorithm that solves it. 

Example Algorithm A

Problem:   The input is a sequence of integers stored in array.

      Output the minimum. 

m



Algorithm:

Example Algorithm B

This algorithm uses two temporary arrays. 

1. copy the input a  to array t1;

      assign  n  ← size of input;

2. While n  > 1

          For i    ← 1 to  n /2

             t2[ i ] ←  min (t1 [ 2*i ], t1[ 2*i + 1] );

          copy array t2 to t1;

          n   ←n/2;

3.   Output   t2[1];

Visualize Algorithm B

34 6 5 9 20 8 11 7

Example Algorithm C

Sort the input in increasing order.  Return the first element of the sorted data.



Introduction: Example Algorithm D

For each element, test whether it is the minimum.

1.5 Time vs. Size of Input

Measurement parameterized by the size of the input. The algorihtms A,B,C are implemented 

and run in a PC. Algorithms D is implemented and run in a supercomputer. Let   Tk( n ) be the 

amount of time taken by the Algorithm.

1.5.1 Methods of Proof

(a) Proof by Contradiction

Assume a theorem is false; show that this assumption implies a property known to be true is 
false --therefore original hypothesis must be true

(b) Proof by Counter example

Use a concrete example to show an inequality cannot hold. Mathematical Induction. Prove a 
trivial base case, assume true for k, and then show hypothesis is true for k+. Used to prove 
recursive algorithms

(c) Proof by Induction

Claim: S (n) is true for all n >= k

Basis: Show formula is true when n = k

Inductive hypothesis: Assume formula is true for an arbitrary n

Step: Show that formula is then true for n+1



Examples

Gaussian Closed Form

Prove 1 + 2 + 3 + … + n = n (n+1) / 2
Basis: If n = 0, then 0 = 0 (0+1) / 2
Inductive hypothesis: Assume 1 + 2 + 3 + … + n = n (n+1) / 2
Step (show true for n+1): 1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1)

                                = n (n+1)/2 + n+1 = [n (n+1) + 2(n+1)]/2 
                                = (n+1) (n+2)/2 = (n+1) (n+1 + 1) / 2

Geometric Closed Form

Prove a0+ a1+ … + an= (an+1-1) / (a -1) for all a 1
Basis: show that   a0= (a0+1-1) / (a -1) 
                             a0= 1 = (a1-1) / (a -1)
Inductive hypothesis: Assume a0+ a1+ … + an= (an+1-1) / (a -1) 
Step (show true for n+1): a0+ a1+ … + an+1= a0+ a1+ … + an+ an+1
                                          = (an+1-1) / (a -1) + an+1= (an+1+1-1) / (a -1)

Strong induction also holds

Basis: show S (0)

Hypothesis: assume S (k) holds for arbitrary k <= n

Step: Show S (n+1) follows

Another variation

 Basis: show S (0), S (1)

 Hypothesis: assume S (n) and S (n+1) are true

 Step: show S (n+2) follows.

1.6 Basic Recursion 

Base case: value for which function can be evaluated without recursion 
Two fundamental rules:- 
1. Must always have a base case 

2. Each recursive call must be to a case that eventually leads toward a base case 

Problem: Write an algorithm that will strip digits from an integer and print them out one by 
one

void print_out(int n)
if(n < print_digit(n); /*outputs single-digit to terminal*/
else
print_out (n/); /*print the quotient*/
print_digit (n % ); /*print the remainder*/

Prove by induction that the recursive printing program works:
Basis: If n has one digit, then program is correct.



hypothesis: Print_out works for all numbers of k or fewer digits 

case k+: k+ digits can be written as the first k digits followed by the least   significant digit

The number expressed by the first k digits is exactly floor (n /)? Which by hypothesis prints 
correctly; the last digit is n%; so the (k+)-digit is printed correctly. By induction, all numbers 
are correctly printed.

Recursion is expensive in terms of space requirement; avoid recursion if simple loop will do
Last two rules
Assume all recursive calls work
Do not duplicate work by solving identical problem in separated recursive calls
Evaluate fib () --use a recursion tree

Fib (n) = fib (n-1) + fib (n-2)

1.7 Algorithm Analysis and Running Time

How to estimate the time required for an algorithm. Techniques that drastically reduce the 
running time of an algorithm. A mathematical framework that more rigorously describes the 
running time of an algorithm.

Running time for small inputs

Running time for moderate inputs



Algorithm Analysis

Measures the efficiency of an algorithm or its implementation as a program as the input size 
becomes very large. We evaluate a new algorithm by comparing its performance with that of 
previous  approaches.  Comparisons  are  asymtotic  analyses  of  classes  of  algorithms.  We 
usually analyze the time required for an algorithm and the space required for a data structure.

 Many criteria affect the running time of an algorithm, including

-speed of CPU, bus and peripheral hardware
-design think time, programming time and debugging time
-language used and coding efficiency of the programmer
-quality of input (good, bad or average)
-Machine independent
-Language independent
-Environment independent (load on the system)
-Amenable to mathematical study
-Realistic

In lieu of some standard benchmark conditions under which two programs can be run, we 
estimate the algorithm's  performance based on the number of key and basic operations it 
requires to process an input of a given size. For a given input size n we express the time T to 
run the algorithm as a function T (n). Concept of growth rate allows us to compare running 
time  of  two  algorithms  without  writing  two  programs  and  running  them  on  the  same 
compute. Formally, let T (A, L, M) be total run time for algorithm A if it were implemented 
with language L on machine M. Then the complexity class of algorithm A is O (T(A, L, M) 
U O(T(A, L, M)) U O(T(A, L, M))  .

Call the complexity class V; then the complexity of A is said to be f if V = O (f).The class of 
algorithms to which A belongs is said to be of at most linear/quadratic/ etc. The growth in 
best case if the function TA best(n) is such (the same also for average and worst case).

1.8 Asymptotic Performance

Asymptotic performance means it always concerns with how does the algorithm behave as 
the problem size gets very large? Running time, Memory/storage requirements,  and Band 
width/power requirements/logic gates/etc.

Asymptotic Notation

By now you should have an intuitive feel for asymptotic (big-O) notation:
What does O (n) running time mean? O (n2)? O (n log n).? 
How does asymptotic running time relate to asymptotic memory usage?.
Our first task is to define this notation more formally and completely.

Analysis of Algorithms

Analysis is performed with respect to a computational model we will usually use a generic 
uni processor random-access machine (RAM).



All memory equally expensive to access. 

No concurrent operations. 

All reasonable instructions take unit time. 

                        Ex: Except, of course, function calls

Constant word size

Ex:  Unless we are explicitly manipulating bits

Input Size

Time and space complexity. This is generally a function of the input size. 
                        E.g., sorting, multiplication

How we characterize input size depends:
Sorting: number of input items

Multiplication: total number of bits

Graph algorithms: number of nodes & edges

Running Time

Number of primitive steps that are executed. Except for time of executing a function call 
most statements roughly require the same amount of time.

                     y = m * x + b

         c = 5 / 9 * (t -32)

                     z = f(x) + g(y)

Analysis

Worst case provides an upper bound on running time. An absolute guarantee
Average case provides the expected running time random (equally likely) inputs. 

Function of Growth rate



1.9 Space Complexity (S (P)=C+SP(I))

Fixed Space Requirements (C) Independent of the characteristics of the inputs and outputs 
instruction  space.  Space  for  simple  variables,  fixed-size  structured  variable,  constants. 
Variable Space Requirements (SP(I))depend on the instance characteristic  I–number,  size, 
values of inputs and outputs associated with recursive stack space, formal parameters, local 
variables, return address.

Program: Simple arithmetic function 
float abc (float a, float b, float c)
{
return a + b + b * c + (a + b -c) / (a + b) + 4.00;
}

Program: Iterative function for summing a list of numbers.

float sum(float list[ ], int n)
{
float tempsum = 0;
int i;
for (i = 0; i<n; i++)
tempsum += list [i];return tempsum;
} 
Sabc(I) = 0
Ssum(I) = 0

Recall: pass the address of the first element of the array & pass by value.

Program: Recursive function for summing a list of numbers.

 float rsum(float list[ ], int n)
 {
 if (n) return rsum(list, n-1) + list[n-1]; 
return 0;
 }

Ssum(I)=Ssum(n)=6n

Assumptions

Space needed for one recursive call of 

Type Name Number of bytes

parameter: float
parameter: integer
return  address:(used 
internally)

List[n]
N

2
2
2

TOTAL per recursive call 6



1.10 Time Complexity

• Compile time (C) : Independent of instance characteristics.

• Run (execution) time TP 

Definition:  TP (n) = caADD(n) + csSUB(n) + clLDA(n) + cstSTA(n)
A  program  step  is  a  syntactically  or  semantically  meaningful  program  segment  whose 
execution time is independent of the instance characteristics.

Example

abc = a + b + b * c + (a + b -c) / (a + b) + 4.0 

abc = a + b + c

Methods to compute the step count 

• Introduce variable count into programs

• Tabular method

Determine the total  number of steps contributed by each  statement step per execution  ×  
frequency 

add up the contribution of all statements 

Program: Iterative summing of a list of numbers:

float sum(float list[ ], int n)
{
float tempsum = 0;
count++; /* for assignment */
int i;
for (i = 0; i < n; i++) 
{
count++; /*for the for loop */
tempsum += list[i];
count++; /* for assignment */}
count++; /* last execution of for */
return tempsum;
count++; /* for return */
}

2n + 3 steps

Program: Simplified version of Program 

float sum(float list[ ], int n)
{



float tempsum = 0;
int i;
for (i = 0; i < n; i++)
count += 2;
count += 3;
return 0;
}

2n + 3 steps

Program :  Recursive summing of a list of numbers

float rsum(float list[ ], int n)
{
count++; /*for if conditional */
if (n) 
{
count++; /* for return and rsum invocation */
return rsum(list, n-1) + list[n-1];
}
count++;
return list[0];
}

2n+2 times

Program : Matrix addition

void add( int a[ ] [MAX_SIZE], int b[ ] [MAX_SIZE],int c [ ] [MAX_SIZE], int rows, int 
cols)
{
int i, j;
for (i = 0; i < rows; i++)
for (j= 0; j < cols; j++)
c[i][j] = a[i][j] +b[i][j];
}

Matrix addition with count statements:
 
void add(int a[ ][MAX_SIZE], int b[ ][MAX_SIZE],int c[ ][MAX_SIZE], int row, int cols )
{
int i, j;
for (i = 0; i < rows; i++)                            (2rows * cols + 2 rows + 1)
{
count++; /* for i for loop */
for (j = 0; j < cols; j++)                          
 {
count++; /* for j for loop */
c[i][j] = a[i][j] + b[i][j];
count++; /* for assignment statement */}
count++; /* last time of j for loop */



}
count++; /* last time of i for loop */
}

Program: Simplification of Program

void add(int a[ ][MAX_SIZE], int b [ ][MAX_SIZE],int c[ ][MAX_SIZE], int rows, int cols)
{
int i, j;for( i = 0; i < rows; i++) 
{
for (j = 0; j < cols; j++)
count += 2;
count += 2;
 }
count++;
} 

2rows cols + 2rows +1 times

Tabular Method

Step count table
Iterative function to sum a list of numbers

Statement s/e        Frequency           Total steps

float sum(float list[ ], int n)
 {
 float tempsum = 0; 
  int i;
 for(i=0; i <n; i++)
 tempsum += list[i]; 
return tempsum;
 }

0                    0                             0
0                    0                             0
1                    1                             1
0                    0                             0
1                   n+1                        n+1
1                   n                             n
1                   1                             1
0                   0                             0

TOTAL                                                   2n+3

Step count table for recursive summing function

Statement s/e        Frequency           Total steps

float rsum(float list[ ], int n) 
{
 if (n) 
return rsum(list, n-1)+list[n-1];
 return list[0];
 }

0                   0                        0
0                   0                        0
1                   n+1                   n+1
 1                   n                        n
 1                   1                        1
 0                   0                        0

TOTAL                                              2n+3



Matrix Addition

Step count table for matrix addition

Statement s/e        Frequency           Total steps

Void add (int a[ ][MAX_SIZE]‧ ‧ ‧ ) 
{
 int i, j;
 for (i = 0; i < row; i++) 
 for (j=0; j< cols; j++) 
 c[i][j] = a[i][j] + b[i][j];
  }

   0                 0                      0                    
   0                 0                      0            
   0                 0                      0               
   1             rows+1             rows+1             
1   rows‧ (cols+1)    rows‧ cols+rows 
1           rows‧ cols            rows‧ cols        

  0                  0                      0

TOTAL                    2 rows‧ cols+2rows+1

1.11 Asymptotic Notation (Q, O, W, o, w)

Defined for functions over the natural numbers.
     Ex: f (n) = Q (n2).

Describes  how  f  (n)  grows  in  comparison  to  n2.  Define  a  set  of  functions;  in 
practice used to compare two function sizes. The notations describe different rate-of-growth 
relations between the defining function and the defined set of functions.

(a) Θ notation

For function g (n), we define (g (n)), big-Theta of n, as the set:

 Θ (g  (n))  = {  f(n)  :∃  positive constants  c1,  c2,  and  n0,such that  ∀ n>=  n0,  we have 0<= 
c1g(n)<= f(n)<=c2g(n) }

Intuitively:

 Set of all functions that have the same rate of growth as g (n). g (n) is an       asymptotically 
tight bound for f(n).



For function g (n), we define (g(n)), big-Theta of n, as the set:

Θ (g (n)) = {f(n) : positive constants c1, c2, and n0,such that ∀  n>=  n0, 
we have 0 <=c1g(n)< f(n)<=c2g(n) }

F (n) and g (n) are nonnegative, for large n.

3n+2 = Θ (n) as 3n+2>=3n for all n>=2 and 3n+2<=4n for all n>=2

So c1=3 and c2=4and n0=2. So, 3 n+3= Θ (n),

10n2+4n+2= Θ (n2), 6*2n+n2= Θ (2n) and

 10*log n+4= Θ (log n).3n+2# Θ (1), 

3n+3# Θ (n2), 10n2+4n+2# Θ (n), 10n2+4n+2# Θ (1)

(b)O-notation

For function g (n), we define O (g(n)), big-O of n, as the set:

O(g(n)) ={f(n) : positive constants c and n0,such that n>= n0, we have0<= f(n)<=cg(n) }

Intuitively: Set of all functions whose rate of grow this same as or lower than that of g (n).
 G (n) is an asymptotic upper bound for f(n).

f (n) = Θ (g(n)) ⇒ f(n) = O(g(n)).Θ (g (n))⊂  O (g (n)).

Example- 1

7n-2
7n-2 is O (n)
need c > 0 and n01 such that7n-2 c• n for n n0
this is true for c = 7 and n0= 1

Example - 2

3n3+ 20n2+ 5
3n3+ 20n2+ 5 is O (n3)
need c > 0 and n01 such that3n3+ 20n2+ 5 c•n3for n n0
this is true for c = 4 and n0= 21

Example: 3
3 log n + log log n
3 log n + log log n is O (log n)
need c > 0 and n01 such that3 log n + log log n c• log n for n n0
this is true for c = 4 and n0= 2



 Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the growth rate  of a function.  The 
statement “f  (n) is O (g (n))” means that the growth rate of f(n) is no more than the growth 
rate of g(n). We can use the big-Oh notation to rank functions according to their growth rate.

f(n)) is O (g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same  growth Yes Yes

Big-Oh Rules

If is f (n)a polynomial of degree d, then f(n)is O(nd), i.e.,
1. Drop lower-order terms
2. Drop constant factors
        Use the smallest possible class of functions Say “2n is O (n)” instead of “2n is O (n2)”. 
Use the simplest expression of the class. Say “3n+5 is O (n)” instead of “3n+5 is O (3n)”

Relatives of Big-Oh

Big-Omega

F (n) is Ω (g(n)) if there is a constant c > 0 and an integer constant n0>=1 such that f(n)>=  c• 

g(n) for n>=  n0

Big-Theta

f(n) is Θ (g(n)) if there are constants c’ > 0 and c’’ > 0 and an integer constant n0>1 such that 
c’• g(n)<= f(n)<= c’’• g(n) for n>= n0

Little-oh

  F (n) is o (g(n)) if, for any constant c > 0, there is an integer constant n0> 0 such that f(n) < 
c• g(n) for n>= n0

Little-omega

f(n) is ω (g(n)) if, for any constant c > 0, there is an integer constant n0> 0 such that f(n) > c• 
g(n) for n>= n0

Intuition for Asymptotic Notation Big-Oh

f (n) is O (g(n)) if f(n) is asymptotically less than or equal to g(n)

Big-Omega

f (n) is Ω (g (n)) if f(n) is asymptotically greater than or equal to g(n)

Big-Theta

f (n) is Θ  (g (n)) if f(n) is asymptotically equal to g(n)



Little-oh

f (n) is o (g (n)) if f(n) is asymptotically strictly less than g(n)

Little-omega

f (n) is ω  (g (n)) if is asymptotically strictly greater than g(n)

Examples

5n2Ω is (n2)

F (n) is Ω (g(n)) if there is a constant c > 0 and an integer constant n0>=1 such that f(n)>= c• 
g(n) for n>= n0 let c = 5 and n0= 1
 

5n2Ω is (n)

f(n) is Ω (g(n)) if there is a constant c > 0 and an integer constant n0>=1 such that f(n) >=c• 
g(n) for n>= n0 let c = 1 and n0= 1
 

5 n2 ω (n)

F (n) is ω  (g(n)) if, for any constant c > 0, there is an integer constant n0> 0 such that f(n) > 
c• g(n) for n >=n0 need 5n0

2> c•n0given c, the n0that satisfies this is n0> c/5 > 0.

(c) Ω  Notation

For function g (n), we define Ω  (g(n)), big-Omega of n, as the set:

Ω  (g (n)) ={ f(n) :∃  positive constants c and n0,such that ∀ n >=n0,we have0 <=cg(n)<=f(n) }

Intuitively: Set of all functions whose rate of growth is the same as or higher than that of g(n).
g(n) is an asymptotic lower bound for f(n).

f (n) =Θ  (g(n)) f(n)⇒ f(n)=Ω  (g(n)) Θ  (g (n))⊂  Ω  (g (n))

Relations Between  Θ  , O, Ω



 

Theorem :  For any two functions  g(n) and  f(n),  f(n) =  Θ (g(n))  iff  f(n) =O(g(n)) and  f(n) = 

Ω (g(n)).

i.e., Θ  (g (n)) = O (g(n)) (g(n))
Asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Running Times

“Running time is O (f (n))” Worst case is O(f(n))

O (f (n)) bound on the worst-case running time ⇒ O (f(n)) bound on the running time of every 
input.

Θ  (f (n)) bound on the worst-case running time Θ  (f(n)) bound on the running time of every 
input.

“Running time is (f  (n))” Best case is (f  (n)) Can still say “Worst-case running time is  Ω (f  

(n))”. Means worst-case running time is given by some unspecified function g (n)∈  Ω (f (n)).

Asymptotic Notation in Equations

We can use asymptotic notation in equations to replace expressions containing lower-order 
terms.

Example: 4n3+ 3n2+ 2n+ 1 = 4n3+ 3n2+ (n) 
                     = 4n3+ (n2) = (n3). 

Θ (f (n)) always stands for an anonymous function g(n) ∈  Θ (f(n))

Little o-notation

For a given function g(n), the set little-o: ∀ o(g(n))= {f(n): ∀ c> 0,∃  n0> 0such that ∀ n>= n0,  

we have  0<= f(n)<cg(n) }.
F (n) becomes insignificant relative to g (n) as n approaches infinity:
lim [f(n) / g(n)] = 0

n->α
g (n) is an upper bound for f(n)that is not asymptotically tight.

Little ω –notation



For a given function g(n), the set little-omega: (g(n))= {f(n): ∀ c> 0,∃  n0> 0such that ∀ n >= 

n0, we have 0 <= cg(n) < f(n) }.
F (n) becomes arbitrarily large relative to g(n)as n approaches infinity:

lim [f(n) / g(n)] =α  .

n->α
g (n) is a lower bound for f(n)that is not asymptotically tight.

………………………..

Chapter-2

Divide and Conquer

2.1 General Method

Definition

Divide the problem into a number of sub problems; conquer the sub problems by solving 
them  recursively.  If  the  sub  problem  sizes  are  small  enough,  solve  the  sub  problems 
recursively, and then combine these solutions to create a solution to the original problem.

                                                                                                              
                                                                                                                  

                
Divide-and conquer is a general algorithm design paradigm

Divide: divide the input data S in two or more disjoint subsets S1, S2, 
Recursively: solve the sub problems recursively
Conquer: combine the solutions for S1, S2… into a solution for S
The base case for the recursion is sub problems of constant size. Analysis can be done using 

recurrence equations

a problem of size 

n 

Sub problem 

1
Sub problem 

2

Of size n/2

A solution to sub 

problem 1

A solution to sub 

problem 2

Solution to original 

problem


